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1. Introduction
A modern aircraft’s turbofan engine is a complex mechanical sys-

tem with numerous components that need to be properly maintained 
to continue its safe and profitable operation. As the components dete-
riorate they need to be replaced or repaired which drive the engine off 
wing for often time consuming overhaul [8] and creates a cost burden 
requiring proper engine fleet management to continue the aircraft op-
eration [18].

Aircraft engine components condition is assessed on recurring in-
spections and compared to the limits provided by the engine manufac-
turer which constitute the Instructions for Continued Airworthiness 
approved and controlled by the regulatory agency in a form of an 
engine manual [16]. The engine manual limits proposed by the engine 
manufacturer are based upon understanding of the physics behind the 
particular wear out scheme and the condition progression until the 
part cannot be operated any longer and has to be replaced.

With the complexities of loads that parts are exposed to a variety 
of competing failure modes occuring at different stages of part’s age 
and progresing at different rates comes with significant impact of en-
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vironmental factors like volcanic activity [12] and air contaminants 
presence like dust aerosols as seen in a test [6] and in operation [26].   

Additionally, an ease of performing a visual on-wing inspection 
of the hardware depends on its location in the engine and capability 
of the inspecting crew and its equipement. Thus with all the factors 
combined the actual confirmation of the part condition is not always 
feasible.

It is common that engine components wear occurs at different 
rates and single components compete in being limiting for the engine 
useful life. Hence a prediction of the current state of the wear of the 
components becomes a crucial task in the fleet management. With the 
development of health monitoring systems and on board diagnostics 
technologies deployment, a significant amount of data has become 
available for engineers to analyze which enables enhancement of clas-
sical condition based maintenance [29]. 

In the light of the latest research based in the field of predicting 
components life this paper proposes a data-driven approach for an 
aviation turbofan engine.
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2. Failure prediction methods overview

2.1 Prognostics approaches
There exist numerous examples of attempts to predict the compo-

nent failure of a part or the entire system depending on the problem at 
hand, design phase and data available. 

 In the concept design phase where numerical models are avail-
able Ning Baojun et al. proposed a method to incorporate boundary 
condition uncertainity into the FEA of a turbofan engine combustor to 
obtain a stochastic life predition [4]. Another approach is presented by 
Echarda et al. [10] where a SARFAN’s aviation engine blade support 
is analyzed with a variation of geometry, material properties and load 
variation to computionally capture the life prediction and its probabil-
ity. These models can be very accurate and deliver useful information 
about the type design, however a good understanding of the failure 
mode is necessary.

With available failure data one can apply different predictive meth-
ods. In their article Yang et al. explore potential for matching the 
failure times of an aeronautical equipment components to probability 
distributions to the outcome of finding that the normal distribution 
to best reflects the actual life distribution [38]. Whereas some cases 
show promise of normal distribution use, the others like the subject 
studied in the other paper by Yang et al. indicate 3 parameter Weibull 
to best represent failure probability of airborne equipment [37]. These 
modelling approach enables the engineer to make predictions of the 
part failure based on the sample of fielded hardware and employing 
statistical methods in place of finite element computations with a 
challenge of collecting sufficient amount of well comprehended data. 

The other researches focus on the engine health monitoring and 
fault diagnostics, where engine sensors are used to look for a signal of 
a deteriorating engine health or a faulty component. Turbofan engine 
health degradation and prognostics of the remaining useful life (RUL) 
was deployed by Zaidan et al.  [41] with a use of a Bayesian Network 
Regression. Xiu et al. present an aviation turbofan engine fault diag-
nosis scheme based on deep belief network (DBN) [36]. The neural 
network composed of mulitple layers forming restricted Botlzmann 
machines (RBM) succesfully modeled engine systems and engine 
sensory data have been fed into the model and corresponding engine 
fault state have been predicted. 

Another deep learning model is researched in a paper by Sina 
Tayarani-Bathaie et al. and revealed that dynamic neural networks 
based on multi-layer perceptron (MLP) networks demonstrated prom-
ising performance in prediction of a turbofan engine fault [31]. Also, 
Heimnes in [14] reports a satisfactory results in RUL prediction with 
a MLP classifier.

In [19] the researchers are introducing useful classifications of the 
AI-based methodologies used in the aerospace industry for systems 
health management; (1) knowledge-based, (2) probabilistic and (3) 
data-driven with authors pointing out towards the growing interest  
paid by the scientific community to the deep learning methods. Sikor-
ska et al. [30]  report successes in the field of prognostics and predic-
tion of RUL by artificial neural networks (ANN) and making them 
a separate category of RUL prediction models noting their ability to 
handle noisy data. Pawełczyk et al [25] have recently reported a suc-
cesful use of  machine learning methods to predict the condition of 
high pressure compressor in a stationary gas turbine.

A different take on asset failure prediction is presented in the works 
of Yoon et al. where deep generative models in semi-supervised learn-
ing scheme have been implemented to predict estimated time to failure 
and show that data-driven approaches are alternatives to the physics-
driven modelling [40]. In the presented study for the sparse labelled 
turbofan data the variational autoencoders have delivered great results 
over the gated recurrent units (GRU) and long short-term memory 
(LSTM) network architectures. 

Among other network architectures deep convolutional neural net-
works (CNN) have been demonstrated by Babu et al. [3] to be feasible 

in predicting a capture a non-linear relationship between RUL and 
sensor data.

Having in mind the mentioned researches in the field of prognos-
tics, the deep learning methods deliver promising results replacing 
physics based models provided sufficient understanding of the matter 
is reached as authors demonstrated in number of publications [23].

2.2. Target variable in researches
An important role in prognostics and health management plays a 

systems health index (HI) as it reflects the system condition and its 
potential to perform its function throughout the system useful life. 
The index is widely used concept across researches based in various 
industries ranging from electronics equipment, through heavy ma-
chinery to the aviation industry.

A paper published by Amir et al. has researched a condition-based 
health index concept where overall health index was calculated based 
on the individual indicators [1] and used a 10-grade scale differentiat-
ing a system condition from good to bad and enabling to categorize 
the particular system units. In power transformer application a health 
index ranging from 0 to 1 have been presented by Lata et al. [2] and 
incorporated a various input relevant to that particular system to es-
tablish the resulting index value.

In the case of turbofan engine, a health index based on engine sen-
sor flight by flight data were used to establish and predict a high-
pressure compressor deterioration [33,34].

Another interesting way to develop a health index out of turbofan 
engine sensor readings have been proposed in [5] where a step by step 
aggregation of the normalized feature values was proposed. In such 
arrangement a growing health index would cumulate over time of op-
eration and judgements about RUL can be made.

Based on the solid fundaments established by the research com-
munity the subject of this paper uses a condition-based health index 
with 10 grade scale.

3. Problem description
Turbofan engine components are inspected reccurently at least as 

often as recommended by the engine manufacturer thus providing a 
valueable condition data. The considered component operates on the 
condition based maintenance scheme. The participating engines have 
been monitored for a period from third quarter of 2014 to first quarter 
of 2020 to obtain one of the hot gas path component data. 

The obvious challenge is in the formulation of the life prediction 
problem. The intent is to determine, based on available information, 
at what stage of degradation the given component is. A very efficient 
technique to determine a moment when a given system would fail is 
RUL estimation. As the authors of the [11] presented, RUL can be de-
termined by use of a degradation characteristic of an aviation engine 
as input variable to obtain a survival function that later can be used to 
predict moment of a probable failure. A degradation characteristic is 
specific to the system and may depend on the physics of a considered 
wear out mechanism. For a gas turbine it could be an exhaust gas tem-
perature [14] or a compressor recoup pressure [25], both being related 
to the system wear out and continuous trend of either could be a signa-
ture that can be used to judge incoming expiration of useful life. 

However, in the researched system, the component wear out, de-
spite progressing with time, is not picked up by engine sensors and 
thus a trend as such cannot be the degradation characteristic. Also, 
there exist no spike in any of the sensor readings when the component 
reaches the condition at which it is desirable to be removed to avoid 
further costly engine damage and potential impact to the customers 
operation schedule. Therefore an anomaly detection methods are not 
available in this case. 

Regardless of its lack of visibility in the engine system sensors, the 
component life is limiting to the entire system. To adress this problem, 
the authors propose to use component condition data and the engine 
operation data preceding the inspection at which the condition rank 
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was collected. Then, by the means of data science; conducting data 
cleaning, feature engineering and feature selection train the models to 
predict the condition. The expectation behind such an approach is that 
there might be non-obvious or hard to quantify differences between 
the engines so that the component in one engine fails at different time 
that the other. The difference could be operational: frequently fully 
loaded aircraft, high altitute of an airports used, short climb path, en-
vironmental: air aerosols and dusts present, high temperatures at the 
airport or manufacturing related; tolerances stacking up results in dif-
ferent loads that the component is exposed to. It is expected that, since 
a turbofan engine is a closed system, these differences can be deter-
mined by sensors not directly related to the considered component and 
those that cannot be otherwise used as a degradation characteristic. 
Such differences accumulated over the operation time could be reson-
sible for the condition rank progression at different rate and modern 
models are anticipated to fit to them.

 Due to the data amount, complexity and high non-linearity neural 
networks are main focus of the research, however machine learning 
models are used for comparison basis. Once models are developed, it 
would be possible to use them to monitor the remaining fleet and plan 
maintenance provided the sensor data would be provided as an input 
to the models.

Fig. 1. The number of engines per rank collected during the monitoring pro-
gram and used as the dataset for this research

Over 150 engines have participated in the monitoring program, 
running at five different thrust ratings, belonging to 40 different air-
lines and more importantly operating on different routes across the 
globe. The engines have been exposed to take-offs and landings in dif-
ferent environmental conditions, altitudes, aircraft loads and runway 
lenghts, however sharing the same part design. The part condition at 
the exposure time counted in flight cycles have been recorded. Simi-
larly to authors of [1] a 10-grade scale have been selected to assign 
meaningful health index, a condtion rank, to the parts based on their 
actual condition as shown in Table 1. The condition ranks are estab-
lished based on the inspection limits provided by the engine manu-

facturer and supported by conclusions from conducting a root cause 
analysis of this failure mode. In this specific problem, the inspection 
limits placed in the engine maintenance documentiation have been 
not sufficient to capture the early progression of the wear and a scale 
based purely on inspection findings would be highly non-linear. Be-
tween the point at which the part exhibits no wear and the point at 
which first inspection limits for reccuring inspection apply there exist 
a relatively long period of preceeding damage accumulation that gives 
away certain symptoms. Upon completed root cause analyses, metal-
lurgical surveys of the components at different damage stages, expert 
knowledge and numerical simulations the ranks 1-6 have been intro-
duced which improves proportionality of the used scale and makes it 
more linear. During this procedure limits have been established that 
enable to assign the rank to inspected hardware. Although, the main-
tenance documentation enables safe and profitable engine operation, 
it had to be expanded to be create a proportional scale that can be used 
in this research to formulate a regression framework. The inspection 
data have been revisited to assign proper value of the rank per the 
extended scale as presented in the Table 1. Introduction of new limits 
that would cause maintenance actions should be carefuly considered 
as more operation stoppages would be created, driving the aircraft 
maintenance cost up and are potentially unnecessary. At this stage, au-
thors of this research are trying to study if a model build on such data 
can deliver results that could be a starting point to reduce the airline 
maintenance burden by making the findigs at inspection predictable. 
Nevertheless, as Figure 1 summarizes, the majority of engines labeled 
are cases requiring replacement and there is a potential class imbal-
ance for a pure classification oriented problem.

As the engine hardware inspection to establish its condition is a 
recurrent process that needs to be accomodated into the airline main-
tenance schedule, it puts a time pressure burden with a potential con-
sequence of unplanned delays and it would be beneficial in that re-
gard to obtain a model that could rank the engines prior to obtaining 
inspection data.

From the perspective of the fleet management such prognostics 
would enable to plan ahead of time for the replacement hardware de-
livery and point out to the engines in the fleet needing it first. These 
are the challenges that authors of this article are trying to adress. 

4. Approach

4.1. Dataset creation
Engines are equipped with a number of sensors collecting flight 

data. Each engine module from front to aft monitors essential opera-
tion paramters; pressure, temperature, variable vanes position setting, 
shafts rotational speeds and fuel flow injected just to name a few. 
On the top of that, there exist thermodynamics models deployed, 
validated through testing campaigns, that utilize these readings and 

Table 1. 10-grade scale used to assign the health index to the part condition

Rank Condition Service limits applicable Maintenance action

9 Not accetable for further operation Exceeded Engine removal & part replacement 

8 Conditionally acceptable for a short duration Allow for operation for short interval Increased recurrent inspection frequency 
on wing

7 Conditionally acceptable for a long duration Allow for operation for long interval Recurrent inspection on wing

6

Wear progression – subsequent expansion of 
the affected area on the component Observed condition is permitted or no spe-

cific limits applicable

Monitoring of the progression on scheduled 
overhauls when part is exposed 

5

4

3

2

1 Visible wear initiation 

0 No wear confirmed visually No action – no wear 
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deliver predictions of other useful parameters 
that are not acquired directly. Additionally, 
environmental data for arrivals and departure 
airports are collected with information about 
ambient temperature, pressure, elevation above 
sealevel and air aerosols and added to the da-
tabase. A Python programming language with 
Keras [17], Tensorflow [34], Sci-kit learn [28] 
and pandas [24] libraries are used for data han-
dling and modelling.

Overall the parameters relevant to the en-
gines for which condition-based ranks were 
established are retrieved from the database and 
arranged in such a way that every rank at given 
inspection is preceded by a number of timesteps 
and the parameters set for each timestep. The 
strategy to create the dataset is depicted in the 
Figure 2.

Fig. 2. Dataset creation strategy

In the raw data cleaning process, the parameters having non-nu-
merical values and those not having sufficient coverage over engine 
operation period are removed. The threshold for lack of coverage is 
set to be less than 5% of data missing.

Remaining parameters are screened for outlying values, those iden-
tified typically come from erroneous sensor readings or faulty data 
processing and get removed from the set. In an iterative process, all 
datapoints with standardized score of that parameter, exceeding ± 6σ 
values are highly suspiscious of being outlying values. Having found 
such values an investigation has been opened to learn if a sensor mal-
functioned, data have been lost or distorted in the migration process 
or some unexpected event have, in fact, occurred. Upon concluding 
the investigation, the values were either replaced or removed from 
the dataset.

The engine’s parameters missing values are located and are han-
dled by finding the median value for that particular parameter for the 
considered engine, then they are filled by that median value. An im-
portant consideration is that due to specifics of the aircraft’s engine 
system, each value of parameter should be considered in the missing 
data management, firstly looking at the data from that engine over 
time and secondly, if data are too scarce, from the perspective of the 
sister engine. This minimizes introduction of additional error due to 
the unknown operational differences.

4.2. Aggregation and feature selection 
To shape the dataset into a problem that can be tackled by machine 

learning methods the time series data from the sensors are represented 
by their time independent distributions with the idea depicted in the 
Figure 3. The values defining the distributions; median, max, 75th per-
centile value and 95th value are chosen as the new features for the 
modelling. The selected distribution characteristics come from ex-
perimentation with the dataset.

The environmental aerosols data are instead represented by the 
sum of its departure and arrival values per the flight and accumulated 
over the total number of flights that engine has completed. 

As the engine is a thermodynamic system, a high degree of colin-
earity is expected between some of its parameters collected during 
its operation. To adress this issue, a collinerality check is performed 
within the groups of parameters as shown in the Figure 4. Redundant 
parameters are identified in this manner that are excluded later from 
feature creation process.

Fig. 4. Correlation matrix

As a final step of feature selection the dataset composed of over 
500 features obtained by cleaning and aggregation undergoes a proc-
ess in which statistically insignificant features are omitted. For that 
purpose the Boruta algorithm is employed [21]. This procedure limits 
the number of features to 62 which are later used for developing the 
best performing model.

Fig. 3. Feature creation on the example of a single input parameter
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4.3. Data transformations
Upon completion of  data cleaning and aggregation, the x set is in a 

form of dataframe of the 62 features by the number of the rows repre-
senting the number of the engines and the y are the engine ranks. For 
the sake of simplicity and having in mind limited number of engines 
the problem is transformed into a regression problem, where rank is 
a continuous value from 0 to 9. Additionally, continuous rank is ex-
pected to better align with business expectations towards the continu-
ity of the damage progression.

As a next step, the dataset is randomly split into train and validation 
dataset. The validation dataset is treated as a hold out set and is used 
eventually to score the models performance against each other. Then, 
the features are standardized and transformed with Python scikit-learn 
package StandardScaler and PowerTransformer functions, with the 
care taken to fitting the functions on the train set, tranforming it and 
then transforming the validation set, while repeating the procedure 
feature by feature. The scaling performed by the function follows the 
equation (1), where x is the value to be scaled:

 z x= −( )µ σ/  (1)

µ being a mean value, s is a standard deviation and z is the scaled 
value. 

Additionally, the power transform utilizes the Yeo-Johnson fam-
ily of equations without the restriction to the values of the variable 
to be transformed as shown in the equation (2). The input data dis-
tribution vary and a transformation to make the distributions more 
normal is performed. Due to negative values of certain parameters, a 
simple Box-Cox transformation limited to non-negative values is not 
feasible. Thus, in the Yeo-Johnson, the λ  parameter, representing the 
transformation parameter,  is determined individually for each input 
feature. In the equation (2), the formulas for λ  values at 0 and 2 en-
sure continuity of the transformation function ψ λ, y( )  for the entire 
range y  values. The equations for 0y ≥  are in fact an equivalent 
of Box-Cox generalized transformations, whereas the formulas for 

0y <  enable transformation of negative y  values [39]:
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4.4. Validation strategy
With the dataset split into train and validation sets, having com-

pleted the data cleaning and transformations, a validation strategy for 
model training, optimization and selection is required.

Hence the train dataset is further used to develop the model, that 
is to tweak the model and find the best performing hyperparameters 
on the set. The train set is then often further split into train and test, 
both complementary subsets of the train set, depending on the need of 
the specific model. A 7 fold cross-validation (CV) process is used as 
graphicaly depicted in the Figure 4.1. 

As the data become randomly split into k subsets, repeating train-
ing over the folds occurs. The model is trained on CV train subset 
for given set of hyperparameters and scored on CV test subset. In the 
effect, an average test score from k folds is obtained as shown in the 
formula (3):

 
1

   
k

i

i

test scoreCV Test score
k=

= ∑  (3)

This strategy enables to select the model that performs the best 
on the train set and has the best average performance while being 
exposed to the variation present in the train set due to the shuffles 
made by CV.

The aforementioned validation set is intended to be a hold out set 
and not used in the model tweaks so that a data leak is avoided and 
a fair and compenent comparison between the different model pos-
sible and to select the one performing best over the specific data. 
Thus all the comparison scores in this paper are calculated over the 
validation set  via means of multiple further splits into train and test 
sets with each of the 7 folds of cross-valdation (CV) procedure.  

4.4. Hyperparameter optimization strategy
The hyperparameters search is conducted by the means of the 

Bayesian optimization (BO) [32] where the parameters resulting in 
the maximum average test score from CV are found. In the Bayesian 
optimization the objective function ( )f x  over a dataset  is optimized 
using the benefits of the Bayes’ Theorem.

This allows the selection of the most plausible objective function 
given the prior assumptions regarding the function and hence improve 
on the performance of the optimization procedure in terms of com-
putational times [7]. In other words, simplifying and applying to the 
problem at hand, posterior probability of a model M given the evi-
dence (data) E is proportional to the likelihood of E given M multi-
plied by the prior probability of M (4):

 ( ) ( ) ( )| |P M E P E M P M∝  (4)

Instead of Python scikit-learn and its RandomGridSearch provid-
ing the grid search through the hyperparameters,the bayesopt package 
is employed and its implementation of bayesian optimization argu-
ment used for every model parameters selection.

4.5. Cost function
As a evaluation score a mean squared error (MSE) is calculated 

as in the equation (5), its used for parameters search in BO and as a 
mean to compare in between the models. What is more, for the benefit 
of interpretation ease a 2  R score is calculated however is not used in 
computations apart from the models comparison:

 ( )2
1

ˆ1 n
i i

i
MSE y y

n =
= −∑  (5)

In the equations (5) and (6) iy  is the ground truth value, also called 
a target and ˆiy  a model prediction:

Fig. 4.1. 7 fold cross-validation procedure used in the test
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5. Models overview
This section describes the models that have been considered for 

this dataset.

5.1. Linear regression
For the sake of establishing a baseline model for the rank predic-

tion capabilities a linear model is used. The Ridge model is used from 
Python package as it incorporates a L2-regularization, called Ridge 
regression, that helps the model to avoid the overfitting. With the con-
siderate number of features compared to the number of datapoints, the 
ridge regularization introduces a penalty to the minimization objective 
by adding the magnitude of sum of square of regression coefficients 
multiplied by α factor as in the formula (7) where objective is the error 
to be minimized by the objective function optimization:

 Loss function y x
i

n
i

j

p

ij j
j

p

j= −
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1 1

2

1

2β α β  (7)

5.2. Random Forest and Extremely Randomized Trees
A regressor based on the ensemble of tree predictors is selected for 

evaluation in the presented problem. The tree predictors are grown 
over randomly selected inputs and their combinations, offer robust-
ness to outliers and data noise while being fast and additionally due 
to Law of Large Number they are less prone to overfitting. A random 
subset of candidate features from the set is used to look for discrima-
tive thresholds via splitting into internal nodes and leafs (external 
nodes). As the subset is random, the tree shape and the thresholds de-
termining the split cause difference between the estimators which pre-
dictions are then averaged out. This becomes a strength of the model 
as some prediction errors can cancel out. The idea is represented in 
equation (8):

 ( ) ( )
1

ˆ 1 B
rf b

b
f T

B =
= ∑x x  (8)

where B is the number of predictors, T is a tree.

Each of n_estimators trees is grown using max_features that is 
used by the algorithm and with tree depth controlled by max_depth. 
Additionally, minimum samples at internal nodes are controlled by 
min_sample_split and at leafs by min_samples_leaf. 

The ExtraTreesRegressor are a variation of the random forest ap-
proach that introduces additional randomness as the thresholds at each 
node are drawn at random and best of them are then used as a splitting 
rule. Apart from that similar parameters to random forest are defined. 

5.3. Support Vector Machines
A non-linear support vector machines regressor with radial basis 

function kernel is also considered. The support vector machines can 
be effective in the case where number of features is large compared to 
the number of samples with the limitation of being memory consum-
ing. From a high-level standpoint and to describe it, a linear example 
is used. Let the ( )g x  be a predictor function. If the data is organized 
in the manner represented in (9) where x are input variables vector 
and the y is the target:

 ( ) ( ) ( )1 1 2 2, , , , , ,l ly y y…x x x  (9)

the linear predictor function is shown as in (10).

 ( ) 0,g x b= +w x  (10)

where ,w x  is dot product of the model weights and the input vari-
ables vectors and 0b  an intercept. Transforming this into an optimiza-
tion problem it takes a form of:

 
1 ,                  
2

minimize w w  (11.1)

 subject to 
0

0

,  

,
jy b

b

ε

ε

− − ≤
 + ≤

j

j

w x

w x
 (11.2)

In the equations (11) ε represents an error, meaning the weights 
vector w that results in the solutions lower than error are found. As 
stated in [35] it is often desirable to have some errors greater than ε 
and hence the formula is rewritten with introduction of slack variables
δ j  and δ j

*  taking the form of these equations (12):
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Upon optimization the first term of the equation is solved just like 
in (11.1) ensuring weights take low values whereas the second term 

C
j

l
j j

=
∑ +( )

1
δ δ * , where l represents the number of observations in the 

dataset, is known as regularization term and ensures that the optimiza-
tion problem is feasible. Thus, parameter C offers a trade-off between 
the model complexity and the error values. Both parameters ε and C 
are hyperparameters subject to optimization. 

5.4. XGBoost
A tree gradient boosting regression model is also researched for 

feasibility of use on the dataset at hand. This machine learning model 
has gained popularity due to its performance, speed and scalability. 
Authors of [9] deliver a very clear description of the algorithm.

The general idea of the model is represented by formula (13), in 
a dataset ( ),n nyx  composed of n observations and m features in a 
input vector nx  a tree ensemble model uses K additive functions to 
predict the target ˆiy :

 ( )( )
1

3ˆ  1
K

i k i
k

y f
=

= ∑ x  (13)

Each tree objective function as shown in (14) contains a loss func-
tion term which measures the difference between the prediction iy  
and the target ˆiy  and added regularization term Ω  that penalizes the 
model complexity:

 ( ) ( )( ) 14ˆ,i i k
i k

Objective loss y y f= + Ω∑ ∑  (14)



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021 365

Loss if a differentiable function that measures the difference be-
tween the prediction and the target. 

Parameters selected for hyperparameter optimization are as in Ta-
ble 2.

5.5. Neural networks – multilayer perceptrons (MLP)
Deep neural network is selected as the last type of the model. A 

multiple hidden layer network, where the input layer takes inputs 
from the dataset features and then feeds it forwards to a single output 
neuron predicting the target is built in Python tensorflow using keras 
framework. 

Let the number of neurons in the layer be m, n the number of sam-
ples and k represent the index of the layer. On the very basic level, in 
the fully connected each neuron in the hidden layer obtains signals 
vector kx  of m values that represent the input, it gets adjusted by 
weights assigned to every connection kw  and a bias kb  and then is 
summed as in equation (15) to create a single output value of the layer 

kv . Then an activation function ϕ  is applied on the kv  to obtain the 
layer output ky :

 ( )15k k kv b= ⋅ + kw x   (15)
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 y vk k= ( )ϕ  (17)

Then the output becomes input for the next layer neurons and the 
process repeats until eventually output of the model for a single sam-
ple is obtained ˆky . Eventually, the error in the prediction is calcu-
lated via loss function by comparison of ky  to the target. Upon the 
error calculation the back propagation occurs and the error is back 

propagated via implemented algorithm to adjust all the 
network weights based on their contribution to the out-
put error.

In the training process the samples are propagated 
multiple times until the weights are adjusted so that the 
loss is minimized. The input data is organized in sam-
ples and then into smaller batches, which are passed 
through the model multiple times. In one epoch the 
model has been exposed to all samples in the training 
set and during one iteration the model has adjusted 
weights to minimize error one batch. In the approach of 
this research the batch size is set to 1, meaning a model 
trains on a single randomly selected sample to adjust 
the weights. 

Dropout layers are employed to help prevent the 
model overfitting, the dropout value is the percentage 
of neurons in the layer that are randomly excluded from 
weight adjustment process and do not partake in the out-
put calculation, it is known to contribute to the model 
robustness. The dropout undergoes hyperparameter op-
timization. Moreover, a L2 regularization (Ridge) in the 
first dense layer is turned on, contributing to the objec-
tive function with its α value also determined via the 
optimization process.

As the problem is presented as a regression an acti-
vation function is selected to be Parametric Rectified 
Linear Unit (PReLU). In one of the landmark papers, 
Kaiming He and others recognized the downfalls of 
the typically used ReLUok activation function and pro-
posed the alternative which is improvement over Leaky 
ReLU and demonstrating improvement in image clas-
sification error neural network [13]. Thus, the used acti-

vation function is as in formula (18):
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i i
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>
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It is worth noting that the PReLU behaves like ReLU for posi-
tive values of input and the return certain parametric linear output for 
negative values.

As explained in the chapter 4.3 the train set is used for the model 
training and optimization leaving the validation set acting as a holdout 
set. The train set is split in advance into the train and test subsets at 
random using StratifiedShuffleSplit function.

The process repeats k times as the folds of cross-validation enforce 
model to train and test on a different batch while test set size is main-
tained. To achieve the perfect balance for this particular dataset, the 
train to test split ratio is kept as one of the hyperparameters.

Lastly, learning rate is selected as a hyperparameter, meaning the 
rate at which the weights are adjusted. Importance of this parameter 
is undoubted as too low values cause inefficient training and too high 
may cause the model not to converge at all.

Model training, being in the essence finding such model weights, 
biases and activations, also called parameters that yield the least er-
ror, is possible thanks to a gradient descent algorithm [27]. Let J (θ )

  be an objective function to be minimized and θ Rθ ∈  be the model 
parameters, by performing the gradient descent, that is updating the 
parameters in the opposite direction of the gradient of the objective 
function ∇ ( )θ θJ  thus following the slope of towards a local min-
imum. A learning rate η, selected as model hyperparameter in this 
study, determines the size of the step towards the expected minimum. 
A popular implementation of this idea, shown in (19), is a stochas-
tic gradient descent (SGD), which enables to calculate the objective 
function on one sample, instead of all in the batch, that significantly 
expedites the walk towards the minimum:

Table 2. Models’ hyperparameters overview

Python package Model 
name Hyperparameters optimized

Linear model Sklearn.linear_model Ridge alpha

Random Forest Sklearn.ensemble
Random 
Forrest 
Regressor

max_features•	
max_depth•	
min_sample_split•	
min_samples_leaf•	
n_estimators•	

Extremely Ran-
domized Trees Sklearn.ensemble

Extra 
Trees 
Regressor

same as in Random Forest

SupportVector 
Machines Sklearn.svm SVR epsilon, C

XGboost Xgboost XGB 
Regressor

max_depth•	
learning rate•	
colsample_bylevel•	
subsample•	
n_estimators•	

ANN MLP Keras/Tensorflow Multilayer 
Perceptron

n_layers•	
n_units per layer•	
dropout rate•	
learning rate•	
test set size•	
regularization•	

MLP ensemble Keras/Tensorflow MLP en-
semble same as in ANN MLP
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 θ θ θt t= − ⋅∇−1 η J(θ) (19)

Too high value can make the optimization process unstable and 
prevent the model to converge, too low value can make training proc-
ess ineffective. There exist numerous optimizers that attempt to im-
prove on it, introducing concepts of momentum to pass over local 
minima and preventing overshoot due to the overpowering momen-
tum (Nesterov Accelerated Gradient). To better deal with data spar-
sity an adaptive learning rate algorithm was introduced, Adagrad, that 
preferentially adjusts learning rates for each parameter and to coun-
teract its downfalls manifesting as monotonically decreasing learning 
rate Adadelta was proposed. Neural networks trained in the research 
utilized Adaptive Moment Estimation [20], ADAM, that computes 
adaptive learning rates for each parameter like aforementioned adap-
tive algorithms but proposing features similar to the concept of mo-
mentum. Let the g= θ∇ J (θt ) be the gradient and ε be a small term 
preventing division by zero in the formula (20):

 θ θt t
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+−1

η
εν̂

ˆ  (20)
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where the tm  is a first momentum (23) and the tv  is the second mo-
mentum (24) and the β1,  β2  are decay terms. 

5.6. Ensemble
Models collected in an ensemble composed of few best scored neu-

ral networks have been explored. In the process of hyperparameter 
optimization of neural networks, three models with various scores 
have been obtained. Similar to the concept of the random forest, an 
ensemble of neural nets can offer an improvement in the overall score 
as some of the individual model errors can potentially cancel out. 

In the study preceding this paper, an ensemble has been created 
through training meta-model of a similar architecture as single neural 
network. The meta-model undergoes exactly the same procedure of 
cross-validated Bayesian hyperparameter optimization with the ex-
ception of using the stacked output of the single models as its input 
and in the prediction is scored with the means of the loss function. 

6. Results
Presented results represent the models that have been subjected to 

hyperparameter optimization described in previous chapters. Both 
scores 2R  and MSE are shown for ease of interpretation, however 
the MSE is selectedfor this regression problem and is used draw 
conclusions. 

The mean squared error score penalizes large errors; as a predic-
tion differs from the true value, the penalty score exhibits quadratic 
growth. Thus, if used as a loss fucntion in an optimization problem, 
penalizing large error helps to find model paratmeters that result in 
minimizing them. 

The validation score is calculated over the validation holdout set 
and the train score represents how model fitted the train set. 

As shown in the Figure 5, the best performing model for the speci-
fied problem and the data available, has been a neural network meta-
model ensemble, achieving MSE score of 0.71, that brought 17.4% 
error decrease from a single best neural network model with a scored 
at 0.86. 

Fig. 5. Results comparison – models’ scores. Train and validation series 
represent model performance on the train and validation sets respec-
tively

The support vector machine regressor model obtained 1.76, that 
outperformed extremely randomized trees models with a score of 1.88 
by a 6.4%. Griadient boosted tree regressor obtained a score of  2.07, 
random forest model scored 2.71 and ridge regression 2.84. 

The difference in error between the score of simple linear model 
(ridge regression) to the neural net ensemble corresponds to 75% of 
the linear model score, which justifies the effort invested into deep 
learning models exploration. 

As shown in the Figure 10 even for the best model, there exist out-
lying residual value in the validation set, which model does not pre-
dict well (model underpredicts a 5 distress rank to be little over 3) and 
increases MSE score. Futhermore, a RMSE score is also calculated to 
conclude about the model applicability to the problem at hand.

In addition to the overall models’ performance, it has been observed 
that all researched models have obtained inconsistent score over the 
ranks as depicted in RMSE score plot in Figure 6. Due to scarcity of 
rank 3 data points, they have not been selected for the validation set 
via a random selection train_test_split scikit-learn function. Hence 
the error values for rank 3 are not available and models ability to pre-
dict rank in this range remains not quantified explicitly.

The highest RMSE have been produced by SVR (4.01) and linear 
model (3.66) for rank 1. The lowest RMSE values have been achieved 
by SVR (0.07) and MLP ensemble model (0.10) while predicting rank 
0. As demonstrated in the RMSE distribution plotted in Figure 6, the 
most common value is between 1.0 and 1.5. 

All studied models have obtained the lowest error while making 
predictions for rank 7 with similar values scored as quantified by a 
standard deviation of 0.19 of RMSE. Conversely, the greatest incon-
sistency have been noted for rank 1; MLP-based models scored low 
error, yet other models have been producing a high error, which con-
tributed to a standard deviation of 1.10 of RMSE for this rank.

The ensemble and single neural network models have a better per-
formance for target variable in range from 0-4 (RMSE in range from 
0.10 to 1.10) and 7-9 (RMSE 0.29 to 0.78), than in predicting ranks 
5-6 (RMSE 1.47 to 2.92). Errors achieved by the MLP based models 
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in this range are the greatest among the considered models followed 
by XGBoost that have obtained 2.14 RMSE over rank 5 and SVR with 
1.61 RMSE over rank 6.

As a general trend and omitting the exceptionally low errors de-
scribed earlier, the machine learning models have had higher RMSE 
values for ranks 0-4 (1.01 to 4.01), then error decreases for ranks 5-6 
(0.07 to 1.61), becomes the low for all for rank 7 (0.56 to 0.94) and 
then slightly increases for ranks 8-9 (0.90 - 1.88). This error general 
trend is different than for earlier discussed MLP-based models.

Some exceptions to this trend have occurred; XGBoost demon-
strated greater RMSE value for ranks 4-5 (2.14 – 2.42) than for ranks 
1-2 (0.94 – 1.62), whereas other machine learning models RMSE were 
in a range of 0.07 – 1.61.

Fig. 6. RMSE score per rank (lower value = less error)

In the tree ensemble based models group; random forest and ex-
tremely randomized trees, the latter have, in general, predicted with 
lower RMSE values and offered an improvement in minimum and 
maximum values. The minimum and maximum values have improved 
from 0.64 and 2.85 to 0.07 and 2.38, respectively. 

Fig. 7. Distribution of RMSE errors calculated per rank for every model using 
validation set

Gradient boosted trees model, XGBoost, has surpassed the ETR 
and random forest models by achieving lower RMSE value for ranks 

1-2 (XGBoost: 0.94 – 1.62, tree ensemble models: 1.94 – 2.75), how-
ever predicted with greater error for ranks 4-5 (XGBoost: 2.14 – 2.42, 
tree ensemble models: 0.07 – 1.78) and offered some improvement 
for ranks 8-9 (XGBoost: 1.05 – 1.20, tree ensemble models: 1.21 – 
1.59).

SVR RMSE values have been low for rank 0 (0.07) and rank 9 
(0.9) and comparable to those of MLP ensemble model errors (rank 
0: 0.1, rank 9: 0.57). Unfortunately, its prediction error inconsistency 
through other ranks have been relatively high (RMSE 0.6 – 4.01).

Based on the plot in Figure 6 the MLP-based models can make a 
prediction of low and high ranks with the least error.

The described trends do not correlate with the distribution of the 
ranks in the training set, training set distribution is similar to that of 
the entire dataset shown in Figure 7. The data points with rank 9 are 
most frequent, ranks 8 and 7 occur more rarely and the other ranks 
data is rather limited. Either of the earlier described trends can be 
explicitly explained by the distribution of the target variable in the 
training set.

As the MLP ensemble model predicts with the least error, it is se-
lected as a reference point and the differences in RMSE of the others 
models to the ensemble are calculated and summarized in the plot 
in Figure 8. The negative difference values, coloured by the shades 
of red are cases where models have performance debit to the MLP 
ensemble and conversely, positive values and shades of green show 
where other models predicted with lower error.

The single MLP model have had a RMSE greatest differences for 
rank 0 (-0.98) and rank 4 (-0.22). MLP ensemble greatly improved er-
ror in predicting rank 0. Otherwise, the differences in majority of ranks 
are between -0.22 and 0.22 values and can be considered similar. An 
exception to this observation is a rank 2 where single MLP predicted 
with lower error and the differences was 0.45. Although, there have 
been ranks where single MLP outperformed the meta-model, the op-
posite situation has been as frequent and due to the lower overall pre-
diction error, the ensemble model has shown a better performance.

The ensemble meta-model has brought improvement in prediction 
error it is lower and upper ranges of the target variable. The other 
models have had, in general, up to -3.10 difference for ranks 0-4 and 
up to -1.40 difference for ranks 8-9. The models have been within 
-0.42 to 0.22 in difference to the ensemble for rank 7, with SVR hav-
ing the least difference (-0.05) and random forest having the greatest 

Fig. 8. Difference in error with respect to MLP ensemble model
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difference (-0.42). As can be observed, these models outperformed the 
ensemble in predicting ranks 5-6 with difference up to 2.72 (ETR).

Residual values calculated as a difference between the true and 
predicted values have been calculated for each model over the train 
and validation sets and demonstrated for selected models in Figure 9. 
Non-linear models representing different algorithms families have 
been chosen: ETR, SVR, XGBoost and MLP.

SVR and XGBoost models have overfitted to the train set, as all 
prediction values line up closely with their corresponding true values 
with little residual error, while the validation set residuals are signifi-
cantly greater. In this particular application, MLP and ETR seem to be 
less prone to this behaviour and greater train set residuals are visible.

Studied models have also been predicting different outlying values, 
however due to the noise in the residual values have been hard to 
interpret. The following observations regarding outlying values have 
been noted:

Fig. 9. Residuals plots for selected models

ETR predictions have the most consistent absolute residual values • 
in the group considered and there are no clear outlying values in 
the prediction.

SVR model predicted two outlying values (overpredicted rank 1 • 
and 2).
XGBoost model residuals are noisy with perhaps one outlying • 
value (overpredicted rank 0).
MLP predicted one outlying value (underpredicted rank 5).• 
SVR, XGBoost and MLP do not predict the same outlying values.• 

Furthermore, a tendency in over and underprediction have been 
analysed; XGBoost tends to overpredict the lower ranks and under-
predict higher ranks. Similar, however less pronounced, trend is ex-
hibited by ETR. The bull’s eye prediction of SVR for rank 0 seems to 
be an exception and if treated as an outlier, its prediction residual error 
trend would become similar.

The MLP model is the least noisy in the considered group and does 
not show a residual error trend exhibited by the other models. What 
is more, the meta-model ensemble residuals depicted in Figure 10 
are similar to the single MLP in lack of the residuals trend and also 
predict the same outlying value. This explains why ensemble model 
shares similar performance for rank 5 and demonstrates the ensemble 
model have not improved the capability to predict this value. 

7. Conclusions
Based on results one can observe that certain models have per-

formed better than the others over the given dataset. The promising 
results presented in the paper align with the recent conclusions of the 
research community regarding deep learning models applications. 

The specifics of the problem have shown that a simple linear mod-
el, although useful to certain degree, can be surpassed in performance 
by more complex architectures. What is more, the superiority of the 
ensemble model over single neural net model is further confirmed and 
found in the referenced literatures researchers insights. Additionaly, 
the neural nets outperformed tree based models and support vector 
machines. As illustrated in the results, all models have a tendency to 
overfit to the train set, despite the counter measures taken, however 
boosted trees, extremely random trees and support vector machines 
have gravitated towards overfitting more than the others. It might be 
noted, that the models that have had the lowest difference between 
train score and validation score are deep learning models. In the ef-
fect, their highest validation scores on this dataset could be attributed 
to their ability to generlize the best and learn without overfitting to 
the training set. 

The best model residuals demonstrate fairly consistent error in con-
tinously predicting conditions ranks across the scale and hence it is 
concluded that it could be satisfactory used for the problem at hand. 
Translating the MSE 0.71 to RMSE returns value of 0.84, which, from 
the forecast perspective, enables to predict ranks with error lower 
than one condition rank in the scale. Such perspective places the deep 
learning models considered in this paper as an adequate candidates for 
the business use, however leaves a room for improvement for future 
studies for the research community.

The obtained results demonstrate that a neural network model build 
on the gathered data can predict the rank with average error less than 
one unit of the rank scale. Although certain models error has not been 
consistent over the enitre rank scale, a potential business application 
could benefit by a prediction by few models, keeping in mind their 
different performance in different rank scale ranges. As a conclusion 
it may be underlined, that proper data collection and ranking the col-
lected inspection data is a relatively long processes, that is greatly ex-
pedited by using established inspection procedures and their findings. 

An important challenge has become a selection of a proper rank 
scale, which should ensure proportionality to formulate a valid regres-
sion framework. In the specific example, the existing data based on 
the engine service limits had to be expanded by introduciton of ranks 
that represented early wear stages and would normally be omitted per 
the existing inspection requirements as being acceptable to operate 
with. Additional ranks required revisiting the collected inspection data 
and proper re-assignment based on the established scale. The devel-
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opment of the scale required a study of the failure mode, conducting 
destructive tests, application of material knowledge and involvment 
of industry experts and wihtout this preceding step further research 
would not be possible.

In the data collection process, a strong bias towards having the ma-
jority of data points composed of worn out parts or parts near the end 
of its useful life have been observed. This is due to the fact, that in the 
aviation industry, the airlines tend to maximize the time that aircraft is 
in operation and stopagges due to the inspections and repairs are ad-
ditional financial burden. Therefore components near its service limits 
or requiring recurrent inspections of increased frequency are removed 
earlier. This data is most widely accesible and shared with the engine 
manufacturer, which explains the bias in the dataset. On the other 
hand, due to some unexpected events, i.e. foreign object damage to 
the engine, the component becomes exposed before the wear process 
is initiated and the dataset has more data points of this stage than few 
of the subsequent ranks. The least available data are from the early 
progression stage of the wear from initiation point to the moment of 
first service limits apply. This is explained by the fact, that such data 
is considered acceptable per the inspectors and typically not captured 
in the inspection process as it presents hardware condition that will 
continue to operate for a significant time between the wear out. This 
mindset is a challenge for implementation of a data collection process 
that enables building a high fidelity prediction model, where a model 
should be trained with a balanced dataset to predict over the entire 
range of the target variable with an acceptably low error. With such 
limitation, ranking scale selection process may become a trade off 
between having sufficiently many grades to capture the physics and 
number of data points per each rank for the model to be able to fit to it. 
As a conclusion from this research, implementation of a data collec-
tion scheme expanding the scope of the current inspection data would 
enable further development of such models. However, it should be 
noted, that a potential data collection processes to keep the models up 
to date can be done without the modification of the inspection limits 
and done post inspection by the engine manufacturer. This approach 
would help to reduce the maintenance cost by providing a way to 
monitor fleet’s health and manage the maintenance without creating 
additional opeartion stoppages.

Using the model, a prediction for every turbofan engine condition 
in the fleet can be obtained easily and updating the prediction regu-
larly with the new input data can provide useful information about 
the progression of the wear and change in the fleet’s health. Infor-
mation about the rank could enable to schedule maintenance and set 
expectations regarding the condition once engine is visually inspected 
on-wing. The information available ahead of time can enable a pri-
oritization of engine repairs and ordering replacement hardware. Pre-
sented study demonstrates that use of such data can deliver a valuable 

solution  to the industry with relatively low investment of time and 
resources using the latest developments in deep and machine learning. 
In the nearest perspective, models might not be feasible to replace the 
on-wings inspection, but can reduce an inspection burden by mak-
ing its outcomes more manageable and predictable. Safety has always 
been a number one factor in the aviation industry and the most likely 
application of such models is expected in the fleet health monitoring 
and maintenance management rather than direct replacement of well 
established inspection processes.

Fig. 10. Ensemble meta-model residuals

8. Next steps
Authors of the article recognize the promising results obtained 

by the scientific community using recurring neural networks archi-
tectures in similarly stated problems, the demonstrated performance 
of deep Bayesian networks and the advantages of combining the ef-
ficiency of semi-supervised learning variational autoencoders with 
deep Bayesian network models on sparsely labelled data typically 
encountered in the aviation industry, thus wish to try these methods to 
further research this particular problem.
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